Force-clamp spectroscopy monitors the folding trajectory of a single protein.

نویسندگان

  • Julio M Fernandez
  • Hongbin Li
چکیده

We used force-clamp atomic force microscopy to measure the end-to-end length of the small protein ubiquitin during its folding reaction at the single-molecule level. Ubiquitin was first unfolded and extended at a high force, then the stretching force was quenched and protein folding was observed. The folding trajectories were continuous and marked by several distinct stages. The time taken to fold was dependent on the contour length of the unfolded protein and the stretching force applied during folding. The folding collapse was marked by large fluctuations in the end-to-end length of the protein, but these fluctuations vanished upon the final folding contraction. These direct observations of the complete folding trajectory of a protein provide a benchmark to determine the physical basis of the folding reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin.

Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint ...

متن کامل

Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.

Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp dat...

متن کامل

Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations.

Single-molecule force-clamp spectroscopy has become a powerful tool for studying protein folding/unfolding, bond rupture, and enzymatic reactions. Different methods have been developed to analyze force-clamp spectroscopy data on polyproteins to obtain kinetic parameters characterizing the mechanical unfolding of proteins, which are often modeled as a two-state process (a Poisson process). Howev...

متن کامل

Osmolyte-induced separation of the mechanical folding phases of ubiquitin.

Solvent molecules play key roles in the conformational dynamics of proteins. Here we use single molecule force-clamp spectroscopy to probe the role played by the stabilizing osmolyte glycerol on the conformational ensembles visited by a single ubiquitin protein folding after mechanical extension. Using a variety of force-pulse protocols, we find that glycerol stabilizes the native state of ubiq...

متن کامل

Direct observation of markovian behavior of the mechanical unfolding of individual proteins.

Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 303 5664  شماره 

صفحات  -

تاریخ انتشار 2004